Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{CsGa}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$ and isotypic $\mathrm{CsCr}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$: decorated kröhnkite-like chains in two unusual hydrogen arsenates

Karolina Schwendtner* and Uwe Kolitsch

Universität Wien, Institut für Mineralogie und Kristallographie, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria
Correspondence e-mail: a9806858@unet.univie.ac.at
Received 29 June 2005
Accepted 21 July 2005
Online 10 August 2005
Hydrothermally synthesized caesium gallium(III) hydrogen arsenate (V), $\mathrm{CsGa}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$, (I), and isotypic caesium chromium(III) hydrogen arsenate(V), $\mathrm{CsCr}\left(\mathrm{H}_{1.5^{-}}\right.$ $\left.\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$, (II), represent a new structure type and stoichiometry among $M^{\mathrm{I}}-M^{\mathrm{III}}$ hydrogen arsenates. The crystal structure, determined from single-crystal X-ray diffraction data, is based on an infinite octahedral-tetrahedral chain and can be described as a decorated kröhnkite-like chain. The chains extend parallel to [100] and are separated by tencoordinated Cs atoms. The hydrogen-bonding scheme comprises one very short symmetry-restricted hydrogen bond, with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.519 (4) and 2.508 (4) \AA in (I) and (II), respectively, and two further medium-strong hydrogen bonds, all of which reinforce the connections between adjacent chains. The average $\mathrm{Ga}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{O}$ bond lengths are 1.973 (15) and 1.980 (13) \AA, respectively, and the average As- O bond lengths in the two protonated arsenate groups lie within a very narrow range $[1.690(18)-1.69$ (3) Å]. The Cs atom is located on a centre of inversion, while the M^{III} and As2 atoms lie on twofold axes. Relationships to CaBa_{2} $\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ and other compounds containing decorated kröhnkite-type or kröhnkite-like chains are discussed.

Comment

The crystallography and topology of hydrothermally synthesized $M^{\mathrm{I}}-M^{\mathrm{III}}$ hydrogen arsenates ($M^{\mathrm{I}}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl}$, $\mathrm{Ag}, \mathrm{NH}_{4}$ and $\mathrm{H}_{3} \mathrm{O} ; M^{\mathrm{III}}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{Sc}, \mathrm{Cr}$ and Fe) are currently being studied in a systematic way by the authors. While our first investigations focused on alkali scandium arsenates (Schwendtner \& Kolitsch, 2004a,b; Kolitsch, 2004b), more recent studies have included the remaining M^{I} and M^{III} cations. So far, these studies have yielded two novel triclinic diarsenate structure types represented by $M^{\mathrm{I}} \operatorname{InAs}_{2} \mathrm{O}_{7}(M=\mathrm{Tl}$, Rb and NH_{4}) and $\mathrm{AgScAs} \mathrm{O}_{7}$, respectively, and a large number of new representatives for several of the six known
structure types of the compounds with the general formula $A^{\mathrm{I}} M^{\mathrm{III}}\left(\mathrm{HXO}_{4}\right)_{2}$ ($X=\mathrm{P}$ or As), as well as several new representatives for $M^{\mathrm{I}} M^{\mathrm{III}} \mathrm{As}_{2} \mathrm{O}_{7}$-type diarsenates (Schwendtner \& Kolitsch, 2005a,b,c).

The present work reports the novel chain-based crystal structures of two unusual isotypic caesium metal(III) hydrogen arsenates, $\mathrm{CsGa}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$, (I), and $\mathrm{CsCr}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$, (II). The asymmetric unit of the structure type contains one Cs, one M^{III}, two As, six O and three H atoms. The Cs atom is located on a centre of inversion, while the M^{III} and As2 atoms lie on twofold axes. One of the H atoms, involved in a very short hydrogen bond, is split (see discussion below).

The crystal structure contains octahedrally coordinated $M^{\text {III }}$, tetrahedrally coordinated As and ten-coordinated Cs atoms (Figs. 1-3). The average $M^{\mathrm{III}}-\mathrm{O}$ bond length is 1.973 (15) \AA in (I) and 1.980 (13) \AA in (II). The latter value is somewhat smaller than the average $\mathrm{Cr}-\mathrm{O}$ bond distance reported for six-coordinate $\mathrm{Cr}^{\mathrm{III}}$ (1.999 \AA; Baur, 1981).

The two non-equivalent AsO_{4} tetrahedra are both protonated. The H atoms involved, viz. H1, H2 and H3, all play important roles in the hydrogen-bonding scheme. Atom O 4 of the $\mathrm{As} 1 \mathrm{O}_{4}$ group is bonded to atom H 1 on a general position, and the $\mathrm{O} 4-\mathrm{H} 1$ group is involved in a medium-strong hydrogen bond (Tables 2 and 4). In contrast, atom O3 is involved in a very short symmetry-restricted hydrogen bond, with O3 . . O3' distances of 2.519 (4) and 2.508 (4) \AA in (I) and

Figure 1
The crystal structure of (I), viewed along [100], in the direction of the infinite decorated kröhnkite-like chains. CdO_{6} octahedra are cornerlinked to two non-equivalent protonated AsO_{4} tetrahedra. The Cs atoms (shown as spheres) separate the chains. Note the very short symmetryrestricted hydrogen bond involving the split H3 atom.
(II), respectively. The split H atom bonded to O3 (H3) could be located experimentally only with difficulty, a situation typical for such strong hydrogen bonds (e.g. Clearfield et al., 1976; Giester, 1989; Büchner \& Wickleder, 2004). The refinement agrees with observations that the H atom involved in a similarly strong hydrogen bond is invariably located on a half-occupied double-well position slightly off the centre of symmetry (e.g. Chevrier et al., 1990, 1993; Macíček et al., 1994; Thomas, 1995; Beran et al., 1997; Olovsson et al., 2001, 2002; Dörsam et al., 2003) and that there is a rapid proton transfer between the two split positions. The two symmetry-equivalent O6 atoms of the doubly protonated ${\mathrm{As} 2 \mathrm{O}_{4} \text { group are each }}^{2}$ bonded to a H atom (H 2) in a general position, and the $\mathrm{O} 6-$ H2 group is involved in a medium-strong hydrogen bond (Tables 2 and 4), similar to that of the $\mathrm{O} 4-\mathrm{H} 1$ group. The site symmetry of the split H 3 atom results in the unusual stoichiometry of the title compounds.

The average As-O bond distances in the two protonated arsenate groups [1.69 (2) and 1.690 (18) \AA for As1, and 1.69 (2) and 1.69 (3) \AA for As2, in (I) and (II), respectively] are both slightly longer than the mean length in arsenate compounds generally ($1.682 \AA$ A; Baur, 1981). The slight increase can be attributed to the influence of the protonation and the distinct distortion of the tetrahedra (cf. Brown, 1981). As expected, the As -OH bonds are distinctly elongated in comparison with the $\mathrm{As}-\mathrm{O}$ bonds (Tables 1 and 3), as is typical of protonated AsO_{4} tetrahedra (Ferraris, 1970; Ferraris \& Ivaldi, 1984). The connectivity of the polyhedral units is rather complex but aesthetic. The $M^{\mathrm{III}} \mathrm{O}_{6}(M=\mathrm{Ga}$ and Cr$)$ octahedron shares each of its six vertices with protonated AsO_{4} tetrahedra. The ${\mathrm{As} 1 \mathrm{O}_{4} \text { group acts as a bridge connecting }}^{\text {g }}$ two adjacent $M^{\mathrm{III}} \mathrm{O}_{6}(M=\mathrm{Ga}$ and Cr$)$ octahedra via the O 1 and O2 ligands (which are in a cis configuration). Thus, an octahedral-tetrahedral kröhnkite-like chain along [100] is formed (see more detailed discussion below). This chain is decorated by the $\mathrm{As} 2 \mathrm{O}_{4}$ group, which shares two of its ligands

Figure 2
The connectivity in (I), shown with displacement ellipsoids for the non-H atoms at the 70% probability level. [Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $-x+1, y,-z+\frac{1}{2} ;($ viii $) x-1, y, z$.]
(two O5 atoms) with the $M^{\mathrm{III}} \mathrm{O}_{6}(M=\mathrm{Ga}$ and Cr) octahedron. The very strong hydrogen bond involving atom H3 (see above), as well as the other two, medium-strong, hydrogen bonds, all provide a direct connection between adjacent chains (Fig. 1).

The Cs atom is located on the origin and has ten O ligands within $3.4 \AA$ [the 11th and 12th O-atom neighbours are both at a distance of 3.9094 (19) \AA in (I) and 3.921 (2) \AA in (II)]. The CsO_{10} polyhedron closely resembles a flattened pentagonal antiprism, and is characterized by average $\mathrm{Cs}-\mathrm{O}$ bond lengths of 3.25 (10) and 3.25 (11) \AA in (I) and (II), respectively.

Bond-valence sums for all atoms were calculated using the bond-valence parameters of Brese \& O'Keeffe (1991). The values obtained are as follows [values for (I) given first]: 1.09/ 1.11 (Cs), 3.11/3.00 (Ga/Cr), 4.92/4.93 (As1), 4.93/4.93 (As2), 1.97/1.95 (O1), 1.76/1.74 (O2), 1.30/1.30 (O3 is the O ligand involved in very short O3..O O3' hydrogen bond donated by the $\mathrm{H}_{1.5} \mathrm{AsO}_{4}$ group), 1.26/1.27 (O 4 is the 'normal' OH group of the $\mathrm{H}_{1.5} \mathrm{AsO}_{4}$ group), 1.91/1.89 (O5), 1.30/1.30 (O6 is the OH group of the $\mathrm{H}_{2} \mathrm{AsO}_{4}$ group) valence units (v.u.). These bond-valence sums are all reasonably close to expected ideal valencies, and confirm that atoms $\mathrm{O} 3, \mathrm{O} 4$ and O 6 represent hydroxy groups. The most underbonded O atom (O2) is the acceptor of one of the two medium-strong hydrogen bonds; the acceptor of the remaining hydrogen bond is O3 (Tables 2 and 4).

The infinite octahedral-tetrahedral chain in $\mathrm{Cs} M^{\mathrm{III}}$ $\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)\left(M^{\mathrm{III}}=\mathrm{Ga}\right.$ and Cr$)$ may be considered a decorated variant of the widespread kröhnkite-type chain, which is built from $M \mathrm{O}_{6}$ octahedra corner-linked to bridging XO_{4} tetrahedra. This chain is named after kröhnkite, $\mathrm{Na}_{2} \mathrm{Cu}^{\mathrm{II}}\left(\mathrm{S}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Dahlman, 1952; Hawthorne \& Ferguson, 1975), and is representative of a larger number of compounds containing infinite $\left[M\left(\mathrm{XO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ chains, where M is divalent $(\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and Cd$)$ or trivalent (Al, Fe, In and Tl), and where X is pentavalent (P and As) or hexavalent (S, Se, Cr, Mo and W) (Fleck et al., 2002; Fleck \& Kolitsch, 2003; Kolitsch \& Fleck, 2005a,b).

While kröhnkite-type chains are not uncommon, decorated versions of either these chains or closely related chains (kröhnkite-like chains according to the classification of Fleck et al., 2002) are rare. Among the few compounds containing such decorated chains is $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Cd}\left(\mathrm{HSe}^{\mathrm{IV}} \mathrm{O}_{3}\right)_{2}\left(\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{2}$

Figure 3
A polyhedral view of the decorated kröhnkite-like chain in (I). The leftmost As $2 \mathrm{O}_{4}$ tetrahedron has been omitted in order to show the chain more clearly.
(Kolitsch, 2004a), which features a kröhnkite-like infinite chain built of CdO_{6} octahedra and pyramidal HSeO_{3} groups, and decorated by $\mathrm{Se}^{\mathrm{VI}} \mathrm{O}_{4}$ tetrahedra. In $\mathrm{Ba}_{2} \mathrm{Ca}\left(\mathrm{HPO}_{4}\right)_{2^{-}}$ $\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ (Toumi et al., 1997), CaO_{6} octahedra and $\mathrm{H}_{2} \mathrm{PO}_{4}$ tetrahedra are corner-linked to form kröhnkite-like infinite chains, which are decorated by additional $\mathrm{H}_{2} \mathrm{PO}_{4}$ tetrahedra. Both $\mathrm{Rb}_{5} \mathrm{Er}\left(\mathrm{MoO}_{4}\right)_{4}$ (Klevtsova \& Glinskaya, 1976; note: atomic coordinates are not included in the ICSD) and isotypic $\mathrm{Rb}_{5} \mathrm{In}\left(\mathrm{MoO}_{4}\right)_{4}$ (Tillmanns et al., 2005) contain very similar, but slightly twisted, decorated kröhnkite-like chains based on $M \mathrm{O}_{6}(M=\mathrm{Er}$ and In$)$ octahedra and MoO_{4} tetrahedra.

Experimental

Large colourless glassy prisms of (I) were prepared hydrothermally ($493 \mathrm{~K}, 7 \mathrm{~d}$) in a Teflon-lined stainless steel autoclave from a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}$ (approximate $\mathrm{Cs}: \mathrm{Ga}$ molar ratio of $1: 1$), arsenic acid and distilled water. Enough arsenic acid was added to keep the pH between about 1.5 and 0.5 . The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. The initial and final pH values were about 1.5 and 1 , respectively. The prisms were accompanied by a small amount ($\sim 20 \mathrm{vol} \%$) of very small hexagonal colourless platelets of $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ (novel structure type, space group R32; Schwendtner \& Kolitsch, 2005b,c). Tiny green transparent prisms of (II) were prepared hydrothermally ($493 \mathrm{~K}, 7 \mathrm{~d}$) in a Teflon-lined stainless steel autoclave from a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ (approximate Cs:Cr molar ratio of 1:1), arsenic acid and distilled water. Enough arsenic acid was added to keep the pH between about 1.5 and 0.5 . The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. The initial and final pH values were 1 and 0.5 , respectively. The prisms were accompanied by about $30 \mathrm{vol} \%$ of an uninvestigated green material (possibly unreacted $\mathrm{Cr}_{2} \mathrm{O}_{3}$).

Compound (I)

Crystal data

$\mathrm{CsGa}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$
$M_{r}=624.43$
Monoclinic, $C 2 / c$
$a=4.714$ (1) \AA 。
$b=14.674$ (3) \AA
$c=15.162$ (3) \AA
$\beta=93.31$ (3) ${ }^{\circ}$
$V=1047.1$ (4) \AA^{3}
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski
et al., 2003)
$T_{\text {min }}=0.204, T_{\text {max }}=0.653$
4542 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.066$
$S=1.07$
2309 reflections
92 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected interatomic distances (A) for (I).

As1-O1	$1.6714(15)$	$\mathrm{Ga}-\mathrm{O} 5^{\mathrm{i}}$	$1.9700(16)$
As1-O2	$1.6804(16)$	$\mathrm{Ga}-\mathrm{O} 2^{\mathrm{ii}}$	$1.9920(16)$
As1-O3	$1.6930(17)$	$\mathrm{Cs}-\mathrm{O} 1$	$3.1496(16)$
As1-O4	$1.7179(19)$	$\mathrm{Cs}-\mathrm{O} 6$	$3.156(2)$
As2-O5	$1.6693(15)$	$\mathrm{Cs}-\mathrm{O} 4^{\mathrm{iii}}$	$3.213(2)$
As2-O6	$1.7115(18)$	$\mathrm{Cs}-\mathrm{O} 5^{\mathrm{i}}$	$3.3536(17)$
Ga-O1	$1.9582(16)$	$\mathrm{Cs}-\mathrm{O} 3^{\text {iv }}$	$3.373(2)$

Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $-x+1, y,-z+\frac{1}{2}$; (iii) $-x+\frac{1}{2},-y+\frac{1}{2},-z$; (iv) $x-1, y, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots 3^{\text {v }}$	0.87 (4)	1.69 (5)	2.519 (4)	158 (8)
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {iii }}$	0.82 (4)	1.95 (4)	2.747 (3)	164 (5)
$\mathrm{O} 6-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {vi }}$	0.86 (4)	1.98 (4)	2.799 (2)	160 (6)

Compound (II)

Crystal data

$\mathrm{CsCr}\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)$

Mo $K \alpha$ radiation

$M_{r}=606.71$
Cell parameters from 1973
Monoclinic, $C 2 / c$
reflections
$a=4.744$ (1) \AA
$\theta=2.0-32.6^{\circ}$
$b=14.625$ (3) \AA
$\mu=13.98 \mathrm{~mm}^{-1}$
$c=15.127$ (3) \AA
$T=293$ (2) K
$\beta=93.48(3)^{\circ}$
Prism, pale green
$V=1047.6(4) \AA^{3}$
$0.08 \times 0.02 \times 0.02 \mathrm{~mm}$
$Z=4$
$D_{x}=3.847 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski
et al., 2003)
$T_{\text {min }}=0.401, T_{\max }=0.767$
3740 measured reflections

$$
\begin{aligned}
& 1918 \text { independent reflections } \\
& 1593 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=32.6^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-21 \rightarrow 22 \\
& l=-22 \rightarrow 22 \\
& \\
& \\
& \begin{array}{l}
\text { l }=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.023 P)^{2}\right. \\
\quad+2.08 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.80 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.00049(9)
\end{array}
\end{aligned}
$$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.053$
$S=1.07$
1918 reflections
89 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 3
Selected interatomic distances (\AA) for (II).

$\mathrm{As} 1-\mathrm{O} 1$	$1.6727(18)$	$\mathrm{Cr}-\mathrm{O} 5^{\mathrm{i}}$	$1.9776(18)$
$\mathrm{As} 1-\mathrm{O} 2$	$1.6811(18)$	$\mathrm{Cr}-\mathrm{O} 2^{\mathrm{ii}}$	$1.9950(18)$
$\mathrm{As} 1-\mathrm{O} 3$	$1.690(2)$	$\mathrm{Cs}-\mathrm{O} 1$	$3.1409(19)$
$\mathrm{As} 1-\mathrm{O} 4$	$1.716(2)$	$\mathrm{Cs}-\mathrm{O} 6$	$3.150(3)$
$\mathrm{As} 2-\mathrm{O} 5$	$1.6692(18)$	$\mathrm{Cs}-\mathrm{O} 4^{\mathrm{iii}}$	$3.209(2)$
$\mathrm{As} 2-\mathrm{O} 6$	$1.713(2)$	$\mathrm{Cs}-\mathrm{O}^{\mathrm{i}}$	$3.354(2)$
$\mathrm{Cr}-\mathrm{O} 1$	$1.9667(19)$	$\mathrm{Cs}-\mathrm{O} 3^{\mathrm{iv}}$	$3.378(2)$
Symmetry codes: (i) $-x, y,-z+\frac{1}{2} ;$ (ii) $-x+1, y,-z+\frac{1}{2} ;$ $x-1, y, z$.			

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots 3^{\text {v }}$	0.84 (4)	1.68 (4)	2.508 (4)	169 (10)
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O}^{3 i \mathrm{iij}}$	0.82 (4)	1.94 (4)	2.753 (3)	172 (5)
$\mathrm{O} 6-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {vi }}$	0.76 (4)	2.05 (4)	2.786 (3)	161 (5)

The split H atom, H3, which is involved in a very short hydrogen bond ($\mathrm{O} 3 \cdots \mathrm{O}^{\prime} \simeq 2.5 \AA$), could be located experimentally in both (I) and (II) with the help of difference Fourier maps calculated by PLATON (Spek, 2003). It was refined with $U_{\text {iso }}(\mathrm{H})$ fixed at $0.04 \AA^{2}$ and the $\mathrm{O} 3-\mathrm{H} 3$ bond length restrained to 0.90 (5) A. The refined site coordinates of atom H3 in (I) and (II) are distinctly off the centre of symmetry at $\left(\frac{3}{4}, \frac{1}{4}, 0\right)$, which links atoms O3 and O3'. The $\mathrm{H} 3 \cdots \mathrm{H}^{\prime}{ }^{\prime}$ distance is approximately $0.99 \AA$ in (I) and $0.86 \AA$ in (II). The remaining two H atoms in each arsenate were refined with $\mathrm{O}-\mathrm{H}$ bond lengths restrained to 0.90 (5) \AA. The highest electron-density peak in (I) is $1.05 \AA$ from the As1 site.

For both compounds, data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO (Otwinowski et al., 2003) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Financial support by the International Centre for Diffraction Data (grant No. 90-03 ET) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1217). Services for accessing these data are described at the back of the journal.

References

Baur, W. H. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe \& A. Navrotsky, pp. 31-52. New York: Academic Press.
Beran, A., Giester, G. \& Libowitzky, E. (1997). Mineral. Petrol. 61, 223-235.

Brandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Büchner, O. \& Wickleder, M. S. (2004). Z. Anorg. Allg. Chem. 630, 1079-1083. (In German.)
Chevrier, G., Giester, G., Jarosch, D. \& Zemann, J. (1990). Acta Cryst. C46, 175-177.
Chevrier, G., Giester, G. \& Zemann, J. (1993). Z. Kristallogr. 206, 7-14.
Clearfield, A., Sims, M. J. \& Gopal, R. (1976). Inorg. Chem. 15, 335-338.
Dahlman, B. (1952). Ark. Mineral. Geol. 1, 339-366.
Dörsam, G., Kahlenberg, V. \& Fischer, R. X. (2003). Z. Anorg. Allg. Chem. 629, 981-984.
Ferraris, G. (1970). Rend. Soc. Ital. Mineral. Petrol. 26, 589-598. (In Italian.)
Ferraris, G. \& Ivaldi, G. (1984). Acta Cryst. B40, 1-6.
Fleck, M. \& Kolitsch, U. (2003). Z. Kristallogr. 218, 553-567.
Fleck, M., Kolitsch, U. \& Hertweck, B. (2002). Z. Kristallogr. 217, 435-443.
Giester, G. (1989). Z. Kristallogr. 187, 239-247.
Hawthorne, F. C. \& Ferguson, R. B. (1975). Acta Cryst. B31, 1753-1755.
Klevtsova, R. F. \& Glinskaya, L. A. (1976). Dokl. Akad. Nauk SSSR, 230, 1337-1340. (In Russian.)
Kolitsch, U. (2004a). Acta Cryst. C60, i3-i6.
Kolitsch, U. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 207-208.
Kolitsch, U. \& Fleck, M. (2005a). Z. Kristallogr. 220, 31-41.
Kolitsch, U. \& Fleck, M. (2005b). In preparation.
Macícek, J., Gradinarov, S., Bontchev, R. \& Balarew, C. (1994). Acta Cryst. C50, 1185-1188.
Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. \& Majerz, I. (2001). Acta Cryst. B57, 311-316.
Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. \& Majerz, I. (2002). Acta Cryst. B58, 627-631.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Schwendtner, K. \& Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.
Schwendtner, K. \& Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.
Schwendtner, K. \& Kolitsch, U. (2005a). Mitt. Österr. Mineral. Ges. 151. In the press.
Schwendtner, K. \& Kolitsch, U. (2005b). Mitt. Österr. Mineral. Ges. 151. In the press.
Schwendtner, K. \& Kolitsch, U. (2005c). In preparation.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thomas, J. (1995). Solid State Ionics, 77, 275-279.
Tillmanns, E., Wierzbicka, M. \& Kolitsch, U. (2005). Acta Cryst. A61. In the press.
Toumi, M., Chabchoub, S., Smiri-Dogguy, L. \& Laligant, Y. (1997). Eur. J. Solid State Inorg. Chem. 34, 1249-1257.

